Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610371

ABSTRACT

Dielectric characterization is extremely promising in medical contexts because it offers insights into the electromagnetic properties of biological tissues for the diagnosis of tumor diseases. This study introduces a promising approach to improve accuracy in the dielectric characterization of millimeter-sized biopsies based on the use of a customized electromagnetic characterization system by adopting a coated open-ended coaxial probe. Our approach aims to accelerate biopsy analysis without sample manipulation. Through comprehensive numerical simulations and experiments, we evaluated the effectiveness of a metal-coating system in comparison to a dielectric coating with the aim for replicating a real scenario: the use of a needle biopsy core with the tissue inside. The numerical analyses highlighted a substantial improvement in the reconstruction of the dielectric properties, particularly in managing the electric field distribution and mitigating fringing field effects. Experimental validation using bovine liver samples revealed highly accurate measurements, particularly in the real part of the permittivity, showing errors lower than 1% compared to the existing literature data. These results represent a significant advancement for the dielectric characterization of biopsy specimens in a rapid, precise, and non-invasive manner. This study underscores the robustness and reliability of our innovative approach, demonstrating the convergence of numerical analyses and empirical validation.


Subject(s)
Electricity , Animals , Cattle , Reproducibility of Results , Biopsy
2.
Diagnostics (Basel) ; 13(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37761382

ABSTRACT

Dielectric characterization has significant potential in several medical applications, providing valuable insights into the electromagnetic properties of biological tissues for disease diagnosis, treatment planning, and monitoring of therapeutic interventions. This work presents the use of a custom-designed electromagnetic characterization system, based on an open-ended coaxial probe, for discriminating between benign and malignant breast tissues in a clinical setting. The probe's development involved a well-balanced compromise between physical feasibility and its combined use with a reconstruction algorithm known as the virtual transmission line model (VTLM). Immediately following the biopsy procedure, the dielectric properties of the breast tissues were reconstructed, enabling tissue discrimination based on a rule-of-thumb using the obtained dielectric parameters. A comparative analysis was then performed by analyzing the outcomes of the dielectric investigation with respect to conventional histological results. The experimental procedure took place at Complejo Hospitalario Universitario de Toledo-Hospital Virgen de la Salud, Spain, where excised breast tissues were collected and subsequently analyzed using the dielectric characterization system. A comprehensive statistical evaluation of the probe's performance was carried out, obtaining a sensitivity, specificity, and accuracy of 81.6%, 61.5%, and 73.4%, respectively, compared to conventional histological assessment, considered as the gold standard in this investigation.

3.
Sci Rep ; 13(1): 9220, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286725

ABSTRACT

In this paper, we present a novel low-frequency sensing solution based on the manipulation of the near-field distribution by employing a passive holographic magnetic metasurface, excited by an active RF coil placed in its reactive region. In particular, the sensing capability is based on the interaction between the magnetic field distribution produced by the radiating system and the magneto-dielectric inhomogeneities eventually present within the material under test. We first start from conceiving the geometrical set-up of the metasurface and its driving RF coil, adopting a low operative frequency (specifically 3 MHz) to consider a quasi-static regime and able to increase the penetration depth within the sample. Afterwards, since the sensing spatial resolution and performance can be modulated by controlling the metasurface properties, the required holographic magnetic field mask, describing the ideal distribution at a specific plane, is designed. Then, the amplitude and phase of currents, flowing in each metasurface unit-cell and required to synthetize the field mask, are determined through an optimization technique. Next, the capacitive loads necessary to accomplish the planned behavior are retrieved, by exploiting the metasurface impedance matrix. Finally, experimental measurements conducted on fabricated prototypes validated the numerical results, confirming the efficacy of the proposed approach to detect inhomogeneities in a medium with a magnetic inclusion in a non-destructive manner. The findings show that holographic magnetic metasurfaces operating in the quasi-static regime can be successfully employed for non-destructive sensing, both in industrial and biomedical fields, despite the extremely low frequencies.

4.
Sci Rep ; 13(1): 560, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36631503

ABSTRACT

In this paper, we present the design of spatial filtering magnetic metasurfaces to overcome the efficiency decay arising in misaligned resonant inductive Wireless Power Transfer systems. At first, we describe the analytical framework for the control of currents flowing on a finite-size metasurface, avoiding classical truncation effects on the periphery and opportunely manipulating, at the same time, the spatial magnetic field distribution produced by the closely placed RF driving coil. In order to validate the theoretical approach, we conceive a numerical test case consisting of a WPT system operating at 12 MHz. By performing accurate full-wave simulations, we prove that inducing a uniform current in the metasurface results in a more robust WPT system in terms of misalignment with respect to conventional configurations, also including standard metasurfaces. Therefore, while the use of metasurfaces in WPT systems has been already demonstrated to be beneficial in terms of efficiency enhancement, we confirmed that a proper control of the metasurfaces field filtering response can be advantageous also for the misalignment issue. Notably, the free space wavelength at the operating frequency (12 MHz) is 25 m, whereas the proposed metasurface dimensions are only 0.0024λ × 0.0024λ. Despite the extremely reduced dimensions, the spatial magnetic field distribution produced by the closely placed RF driving coil can be nevertheless opportunely manipulated. Finally, experimental measurements conducted on fabricated prototypes validated the numerical results, demonstrating the effectiveness of the proposed approach. These achievements can be particularly helpful in WPT applications where the position of driving and receiving coils frequently changes, as in consumer devices and biomedical implants.

5.
Sensors (Basel) ; 22(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890812

ABSTRACT

In recent years, the usage of radio frequency magnetic fields for biomedical applications has increased exponentially. Several diagnostic and therapeutic methodologies exploit this physical entity such as, for instance, magnetic resonance imaging, hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation. Within this framework, the magnetic field focusing and shaping, at different depths inside the tissue, emerges as one of the most important challenges from a technological point of view, since it is highly desirable for improving the effectiveness of clinical methodologies. In this review paper, we will first report some of the biomedical practices employing radio frequency magnetic fields, that appear most promising in clinical settings, explaining the underneath physical principles and operative procedures. Specifically, we direct the interest toward hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation, together with a brief mention of magnetic resonance imaging. Additionally, we deeply review the technological solutions that have appeared so far in the literature to shape and control the radio frequency magnetic field distribution within biological tissues, highlighting human applications. In particular, volume and surface coils, together with the recent raise of metamaterials and metasurfaces will be reported. The present review manuscript can be useful to fill the actual gap in the literature and to serve as a guide for the physicians and engineers working in these fields.


Subject(s)
Human Body , Hyperthermia, Induced , Humans , Hyperthermia, Induced/methods , Magnetic Fields , Magnetic Resonance Imaging/methods , Radio Waves
6.
Sci Rep ; 12(1): 3258, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35228640

ABSTRACT

In this paper, we present a general equivalent-circuit interpretation of finite magnetic metasurfaces interacting with an arbitrary arrangement of RF coils operating in near-field regime. The developed model allows to derive a physical interpretation of the interactions between the metasurface and the surrounding RF coils, both transmitting and receiving. Indeed, especially for near-field applications, the metasurface presence modifies the behavior of each RF coil differently, due to the specific reciprocal interactions. Hence, the proposed approach introduces a source-related complex magnetic permeability matrix, overcoming the traditional bulk definition. To prove the model validity against full-wave simulations, we present two significant test cases, commonly used in practical applications. The former is represented by the simple metasurface-coil arrangement from which important and fundamental considerations can be drawn. The latter system is composed by a transmitting and a receiving coil with a metasurface in between; detailed explanations on the metasurface interactions with both the RF coils are developed. Finally, we also achieved an excellent agreement between the numerical results and the measurements obtained through fabricated prototypes. In summary, the circuit interpretation herein presented, in addition to the rigorous electromagnetic theoretical approaches already appeared in the open literature, reveals useful in providing quantitative, practical, and easy-to-handle guidelines for the design and physical understanding of finite magnetic metasurfaces interacting with arbitrary RF coils arrangements in the near-field regime.

7.
Opt Express ; 29(20): 31036-31047, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34615205

ABSTRACT

An improved dual-polarized multifunctional switchable absorber/reflector with both wideband absorbing and wideband reflecting characteristics is presented in this paper. The proposed structure consists of three parts including a top-layer active frequency selective surface (AFSS) structure, a bottom-layer metal sheet and an air spacer in between. The polarization stability is satisfied by deploying the super-element topology, which contains four similar unitary elements arranged in a 2 × 2 matrix form. The PIN diode is employed as a RF switch in the AFSS structure for the purpose of switching. The bias networks responsible for different polarizations are intentionally separated through via holes. Multifunctional properties with four different operating states can be attained by controlling horizontally- and vertically-loaded PIN diodes independently. In addition, the biggest advantage of the proposed structure lies in its wideband features at both absorbing and reflecting states for different polarizations and incident angles. Finally, a prototype of the design is fabricated and measured to verify the simulation, and a good agreement between the simulated and observational results can be achieved under normal incidence as well as oblique incidence.

8.
IEEE Trans Med Imaging ; 39(10): 3175-3186, 2020 10.
Article in English | MEDLINE | ID: mdl-32310762

ABSTRACT

The birdcage Radio Frequency (RF) coil is one of the most used configurations in Magnetic Resonance Imaging (MRI) scanners for the detection of the proton (1H) signal over a large homogeneous volume. More recently, birdcage RF coils have been successfully used also in the field of X-nuclei MRI, where the signal of a second nucleus (e.g. 13C, 23Na, 31P, and many others) needs to be detected with high sensitivity and spatial homogeneity. To this purpose several technical solutions have been adopted to design Double Tuned (DT) volume RF coils, including the recent configuration of the nested birdcage RF coils. One of the main problems in the design of DT RF coils is the decoupling between the 1H and X channels, and a number of solutions have been adopted over the years. In this work, based on numerical and workbench methods, we report the decoupling optimization of DT (1H/23Na) nested RF birdcage coils suitable for 2.35 T MRI scanners encompassing an inner Low-Pass (LP) birdcage used for X-nuclei, an outer High-Pass (HP) birdcage for 1H and an external cylindrical RF shield. We show that a suitable geometrical selection of the two coaxial RF birdcage coils (relative angular orientation, diameters and lengths) and RF shield (diameter, length) allows a significant decoupling optimization. We also provide valuable information about the RF B1+ field homogeneity and efficiency. Our approach was validated both with numerical simulations and workbench testing using DT nested RF coil prototypes.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Animals , Equipment Design , Phantoms, Imaging , Protons
9.
IEEE Trans Biomed Eng ; 67(10): 2806-2816, 2020 10.
Article in English | MEDLINE | ID: mdl-32031927

ABSTRACT

OBJECTIVE: A systematic analytical approach to design Spiral Resonators (SRs), acting as distributed magnetic traps (DMTs), for the decoupling of concentric Double-Tuned (DT) RF coils suitable for Ultra-High Field (7 T) MRI is presented. METHODS: The design is based on small planar SRs placed in between the two RF loops (used for signal detection of the two nuclei of interest). We developed a general framework based on a fully analytical approach to estimate the mutual coupling between the RF coils and to provide design guidelines for the geometry and number of SRs to be employed. Starting from the full-analytical estimations of the SRs geometry, electromagnetic simulations for improving and validating the performance can be carried out. RESULTS AND CONCLUSION: We applied the method to a test case of a DT RF coil consisting of two concentric and coplanar loops used for 7 T MRI, tuned at the Larmor frequencies of the proton (1H, 298 MHz) and sodium (23Na, 79 MHz) nuclei, respectively. We performed numerical simulations and experimental measurements on fabricated prototypes, which both demonstrated the effectiveness of the proposed design procedure. SIGNIFICANCE: The decoupling is achieved by printing the SRs on the same dielectric substrate of the RF coils thus allowing a drastic simplification of the fabrication procedure. It is worth noting that there are no physical connections between the decoupling SRs and the 1H/23Na RF coils, thus providing a mechanically robust experimental set-up, and improving the transceiver design with respect to other traditional decoupling techniques.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Equipment Design , Magnetics , Phantoms, Imaging , Sodium
10.
Sci Rep ; 8(1): 7651, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29769556

ABSTRACT

An ultra-wideband linear polarization converter based on a reflecting metasurface is presented. The polarizer is composed by a periodic arrangement of miniaturized metallic elements printed on a grounded dielectric substrate. In order to achieve broadband polarization converting properties, the metasurface is optimized by employing a genetic algorithm (GA) which imposes the minimization of the amplitude of the co-polar reflection coefficient over a wide frequency band. The enhanced angular stability of the polarization converter is due to the miniaturized unit cell which is obtained by imposing the maximum periodicity of the metasurface in the GA optimization process. The pixelated polarization converter obtained by the GA exhibits a relative bandwidth of 102% working from 8.12 GHz to 25.16 GHz. The analysis of the surface current distribution of the metasurface led to a methodology for refining the optimized GA solution based on the sequential removal of pixels of the unit cell on which surface currents are not excited. The relative bandwidth of the refined polarizer is extended up to 117.8% with a unit cell periodicity of 0.46 mm, corresponding to λ/20 at the maximum operating frequency. The performance of the proposed ultra-wideband polarization metasurface has been confirmed through full-wave simulations and measurements.

11.
Sci Rep ; 6: 25458, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27181841

ABSTRACT

A methodology to obtain wideband scattering diffusion based on periodic artificial surfaces is presented. The proposed surfaces provide scattering towards multiple propagation directions across an extremely wide frequency band. They comprise unit cells with an optimized geometry and arranged in a periodic lattice characterized by a repetition period larger than one wavelength which induces the excitation of multiple Floquet harmonics. The geometry of the elementary unit cell is optimized in order to minimize the reflection coefficient of the fundamental Floquet harmonic over a wide frequency band. The optimization of FSS geometry is performed through a genetic algorithm in conjunction with periodic Method of Moments. The design method is verified through full-wave simulations and measurements. The proposed solution guarantees very good performance in terms of bandwidth-thickness ratio and removes the need of a high-resolution printing process.

12.
J Magn Reson ; 261: 38-42, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26529200

ABSTRACT

A procedure for evaluating radio-frequency electromagnetic fields in anatomical human models for any matching and coupling conditions is introduced. The procedure resorts to the extraction of basis functions: such basis functions, which represent the fields produced by each individual port without any residual coupling, are derived through an algebraic procedure which uses the S parameter matrix and the fields calculated in one (only) full-wave simulation. The basis functions are then used as building-blocks for calculating the fields for any other S parameter matrix. The proposed approach can be used both for volume coil driven in quadrature and for parallel transmission configuration.


Subject(s)
Electromagnetic Fields , Algorithms , Computer Simulation , Head/anatomy & histology , Humans , Magnetic Resonance Imaging , Models, Anatomic , Radio Waves
13.
Bioelectromagnetics ; 36(5): 358-66, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25808287

ABSTRACT

Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults.


Subject(s)
Electromagnetic Fields , Magnetic Resonance Imaging , Adult , Child , Child, Preschool , Computer Simulation , Female , Head , Humans , Leg , Magnetic Resonance Imaging/instrumentation , Male , Models, Biological
14.
Opt Express ; 20(7): 7580-9, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453437

ABSTRACT

We present three monolithic metamaterial-based THz bandpass filters, the skewed circular slot rings, meandered slots and Jerusalem cross slots, to fit in the THz gap. These THz bandpass filters are comprised of a metal-dielectric-metal (MDM) structure that supports multiple resonances of electric dipole, magnetic dipole, and standing-wave-like modes. By exciting and further hybridizing these individual resonance modes, we demonstrate excellent performance of broad bandwidth and sharp band-edge transition beyond conventional bandpass filters. By further employing our ad hoc Genetic Algorithm (GA) and Periodic Method of Moments (PMM) to optimize our designs, we achieve an ultra-broad 3dB fractional bandwidth and sharp band-edge transition up to 82.2% and 58.3 dB/octave, respectively, benefiting the practical applications such as material recognition in security systems, imaging, and absorbers.


Subject(s)
Filtration/instrumentation , Refractometry/instrumentation , Equipment Design , Equipment Failure Analysis , Terahertz Radiation
15.
Mutat Res ; 716(1-2): 1-9, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21827772

ABSTRACT

The production of mitotic spindle disturbances and activation of the apoptosis pathway in V79 Chinese hamster cells by continuous 2.45 GHz microwaves exposure were studied, in order to investigate possible non-thermal cell damage. We demonstrated that microwave (MW) exposure at the water resonance frequency was able to induce alteration of the mitotic apparatus and apoptosis as a function of the applied power densities (5 and 10mW/cm(2)), together with a moderate reduction in the rate of cell division. After an exposure time of 15 min the proportion of aberrant spindles and of apoptotic cells was significantly increased, while the mitotic index decreased as well, as compared to the untreated V79 cells. Additionally, in order to understand if the observed effects were due to RF exposure per se or to a thermal effect, V79 cells were also treated in thermostatic bath mimicking the same temperature increase recorded during microwave emission. The effect of temperature on the correct assembly of mitotic spindles was negligible up to 41°C, while apoptosis was induced only when the medium temperature achieved 40°C, thus exceeding the maximum value registered during MW exposure. We hypothesise that short-time MW exposures at the water resonance frequency cause, in V79 cells, reversible alterations of the mitotic spindle, this representing, in turn, a pro-apoptotic signal for the cell line.


Subject(s)
Cell Survival/radiation effects , Microwaves/adverse effects , Spindle Apparatus/radiation effects , Animals , Apoptosis/radiation effects , Cell Division/radiation effects , Cell Line , Cricetinae , Cricetulus , Hot Temperature , Mitosis , Mitotic Index
SELECTION OF CITATIONS
SEARCH DETAIL
...